Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 9 - Power Series - 9.2 Properties of Power Series - 9.2 Exercises - Page 683: 14

Answer

The radius of convergence for the power series is $R=0 $ and the interval of convergence is $10$.

Work Step by Step

Ratio Test; Let us consider an infinite series $\Sigma a_k$ with positive terms and suppose that $l=\lim\limits_{k \to \infty}|\dfrac{a_{k+1}}{a_k}|$ 1) When $l \lt 1$. then series $\Sigma a_k$ converges absolutely. 2) When $l \gt 1$. then series $\Sigma a_k$ diverges. 3) When $l = 1$. then series $\Sigma a_k$ may converge or diverge, that is, the test is inconclusive. Here, we have $a_k=k !(x-10)^k$ Now, $l=\lim\limits_{k \to \infty}|\dfrac{a_{k+1}}{a_k}|=\lim\limits_{k \to \infty}|\dfrac{(k+1) !(x-10)^{k+1}}{k !(x-10)^k}|=|x-10| \lim\limits_{k \to \infty} |k+1|=\infty$ So, the radius of convergence for the power series is $R=\dfrac{1}{l}=\dfrac{1}{\infty}=0$. This implies that the interval of convergence is $10$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.