Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 14 - Vector Calculus - 14.1 Vector Fields - 14.1 Exercises - Page 1058: 35

Answer

$\nabla \phi (x, y)=\lt \dfrac{-x}{(x^2+y^2+z^2)^{3/2}}, \dfrac{-y}{(x^2+y^2+z^2)^{3/2}}, \dfrac{-z}{(x^2+y^2+z^2)^{3/2}} \gt$

Work Step by Step

Our aim is to compute the the gradient vector field vector. Here, we have $\phi (x, y)=(x^2+y^2+z^2)^{-1/2}$ Now, $\nabla \phi (x, y)=\lt \dfrac{\partial \phi (x, y)}{\partial x} , \dfrac{\partial \phi (x, y)}{\partial y} , \dfrac{\partial \phi (x, y)}{\partial z} \gt $ or, $\nabla \phi (x, y)=\lt \dfrac{\partial (x^2+y^2+z^2)^{-1/2})}{\partial x} , \dfrac{\partial (x^2+y^2+z^2)^{-1/2}))}{\partial y}, \dfrac{\partial (x^2+y^2+z^2)^{-1/2})}{\partial z} \gt \\= \lt - \dfrac{(2x+0+0)}{2} (x^2+y^2+z^2)^{-3/2} , - \dfrac{(0+2y++0)}{2} (x^2+y^2+z^2)^{-3/2}, - \dfrac{(0+0+2z)}{2} (x^2+y^2+z^2)^{-3/2} \gt $ Thus, we have $\nabla \phi (x, y)=\lt \dfrac{-x}{(x^2+y^2+z^2)^{3/2}}, \dfrac{-y}{(x^2+y^2+z^2)^{3/2}}, \dfrac{-z}{(x^2+y^2+z^2)^{3/2}} \gt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.