Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 14 - Vector Calculus - 14.1 Vector Fields - 14.1 Exercises - Page 1058: 34

Answer

$\nabla \phi (x, y)=\lt \dfrac{2x}{1+x^2+y^2+z^2}, \dfrac{2y}{1+x^2+y^2+z^2} , \dfrac{2z}{1+x^2+y^2+z^2} \gt$

Work Step by Step

Our aim is to compute the the gradient vector field vector. Here, we have $\phi (x, y)=\ln (1+x^2+y^2+z^2)$ Now, $\nabla \phi (x, y)=\lt \dfrac{\partial \phi (x, y)}{\partial x} , \dfrac{\partial \phi (x, y)}{\partial y} , \dfrac{\partial \phi (x, y)}{\partial z} \gt $ or, $\nabla \phi (x, y)=\lt \dfrac{\partial (\ln (1+x^2+y^2+z^2)}{\partial x} , \dfrac{\partial (\ln (1+x^2+y^2+z^2))}{\partial y}, \dfrac{\partial (\ln (1+x^2+y^2+z^2))}{\partial z} \gt \\= \lt \dfrac{1}{1+x^2+y^2+z^2} \dfrac{\partial (1+x^2+y^2+z^2)}{\partial x},\dfrac{1}{1+x^2+y^2+z^2} \dfrac{\partial (1+x^2+y^2+z^2)}{\partial y}, \dfrac{1}{1+x^2+y^2+z^2} \dfrac{\partial (1+x^2+y^2+z^2)}{\partial z} \gt $ Thus, we have $\nabla \phi (x, y)=\lt \dfrac{2x}{1+x^2+y^2+z^2}, \dfrac{2y}{1+x^2+y^2+z^2} , \dfrac{2z}{1+x^2+y^2+z^2} \gt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.