Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 14 - Vector Calculus - 14.1 Vector Fields - 14.1 Exercises - Page 1058: 32

Answer

$\nabla \phi (x, y)=\lt \dfrac{y}{y^2+x^2}, \dfrac{-x}{y^2+x^2}\gt $

Work Step by Step

Our aim is to compute the the gradient vector field vector. Here, we have $\phi (x, y)=\tan^{-1} (x/y)$ Now, $\nabla \phi (x, y)=\lt \dfrac{\partial \phi (x, y)}{\partial x} , \dfrac{\partial \phi (x, y)}{\partial y} \gt $ or, $\nabla \phi (x, y)=\lt \dfrac{\partial (\tan^{-1} (x/y))}{\partial x} , \dfrac{\partial (\tan^{-1} (x/y))}{\partial y} \gt \\= \lt \dfrac{1}{1+(x/y)^2} \dfrac{\partial (x/y)}{\partial x} , \dfrac{1}{1+(x/y)^2} \dfrac{\partial (x/y)}{\partial y} \gt\\=\lt \dfrac{1}{y} \times \dfrac{y^2}{y^2+x^2}, \dfrac{-x}{y^2} \times \dfrac{y^2}{y^2+x^2}\gt $ Thus, we have $\nabla \phi (x, y)=\lt \dfrac{y}{y^2+x^2}, \dfrac{-x}{y^2+x^2}\gt $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.