Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 12 - Functions of Several Veriables - 12.4 Partial Derivatives - 12.4 Exercises - Page 904: 24

Answer

$${F_p}\left( {p,q} \right) = \frac{{2p + q}}{{2\sqrt {{p^2} + pq + {q^2}} }},\,\,\,\,\,\,\,\,\,{F_q}\left( {p,q} \right) = \frac{{p + 2q}}{{2\sqrt {{p^2} + pq + {q^2}} }}$$

Work Step by Step

$$\eqalign{ & F\left( {p,q} \right) = \sqrt {{p^2} + pq + {q^2}} \cr & {\text{Find the partial derivatives }}{F_p}\left( {p,q} \right){\text{ and }}{F_q}\left( {p,q} \right){\text{ then}} \cr & {F_p}\left( {p,q} \right) = \frac{\partial }{{\partial p}}\left[ {\sqrt {{p^2} + pq + {q^2}} } \right] \cr & {\text{treat }}q{\text{ as a constant}} \cr & {\text{use }}\left[ {\sqrt u } \right]' = \frac{{u'}}{{2\sqrt u }} \cr & {F_p}\left( {p,q} \right) = \frac{1}{{2\sqrt {{p^2} + pq + {q^2}} }}\frac{\partial }{{\partial p}}\left[ {{p^2} + pq + {q^2}} \right] \cr & {F_p}\left( {p,q} \right) = \frac{1}{{2\sqrt {{p^2} + pq + {q^2}} }}\left( {2p + q} \right) \cr & {F_p}\left( {p,q} \right) = \frac{{2p + q}}{{2\sqrt {{p^2} + pq + {q^2}} }} \cr & \cr & and \cr & \cr & {F_q}\left( {p,q} \right) = \frac{\partial }{{\partial q}}\left[ {\sqrt {{p^2} + pq + {q^2}} } \right] \cr & {\text{treat }}p{\text{ as a constant}} \cr & {\text{use }}\left[ {\sqrt u } \right]' = \frac{{u'}}{{2\sqrt u }} \cr & {F_q}\left( {p,q} \right) = \frac{1}{{2\sqrt {{p^2} + pq + {q^2}} }}\frac{\partial }{{\partial q}}\left[ {{p^2} + pq + {q^2}} \right] \cr & {F_q}\left( {p,q} \right) = \frac{1}{{2\sqrt {{p^2} + pq + {q^2}} }}\left( {p + 2q} \right) \cr & {F_q}\left( {p,q} \right) = \frac{{p + 2q}}{{2\sqrt {{p^2} + pq + {q^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.