Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.1 Integration by Parts - 7.1 Exercises: 13


$-t \cot t + \ln |\sin t| + C$

Work Step by Step

Let $u = t, dv = \csc^2 t dt$ and $du = dt, v = - \cot t$ $\int t \csc^2 t dt$ $= -t \cot t - \int -\cot t dt$ $= -t \cot t + \int \frac{\cos t}{\sin t} dt$ $= -t \cot t + \int \frac{1}{z} dz$ $= -t \cot t + \ln |z| + C$ $= -t \cot t + \ln |\sin t| +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.