Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.1 Integration by Parts - 7.1 Exercises: 12


$y \tan^{-1}2y - \frac{1}{4} \ln(1+4y^2) + C$

Work Step by Step

Let $u = \tan^{-1} 2y, dv = dy$ and $du = \frac{2}{1+4y^2} dy, v = y$ Then $\int \tan^{-1}2y dy$ $= y \tan^{-1} 2y - \int \frac{2y}{1+4y^2} dy$ $= y \tan^{-1} 2y - \int \frac{1}{t} (\frac{1}{4} dt)$ $= y \tan^{-1} 2y - \frac{1}{4}\ln |t| + C$ $= y \tan^{-1} 2y - \frac{1}{4}\ln (1+4y^2) + C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.