Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.3 Logarithmic Functions - 6.3 Exercises - Page 427: 51

Answer

$\infty$

Work Step by Step

The given limit can be written: $$\lim_{x \to \infty}\ln{\frac{1+x^2}{1+x}}$$ $$=\lim_{x \to \infty}\ln{(x-\frac{x-1}{1+x})}$$ $$=\lim_{x \to \infty}\ln{\left(x-1+\frac{2}{1+x}\right)}$$ $$=\lim_{x \to \infty}\ln{\left(x-1+\frac{2}{1+x}\right)}$$ Since $\displaystyle\lim_{x \to \infty}\left(x-1+\frac{2}{1+x} \right)=\infty$ so: $$\lim_{x \to \infty}\ln{\left(x-1+\frac{2}{1+x}\right)}=\infty$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.