Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - Review - Exercises: 16

Answer

$G_{x}=ze^{xz}sin(\frac{y}{z})$, $G_{y}=\frac{e^{xz} cos(\frac{y}{z})}{z}$ and $G_{z}=xe^{xz}sin(\frac{y}{z})-\frac{ye^{xz}cos(\frac{y}{z})}{z^{2}}$

Work Step by Step

Given: $G(x,y,z)=e^{xz}sin(\frac{y}{z})$ Need to find first partial derivatives $G_{x}$,$G_{y}$ and $G_{z}$ Differentiate the function with respect to $x$ keeping $y$ and $z$ constant. $G_{x}=ze^{xz}sin(\frac{y}{z})$ Differentiate the function with respect to $y$ keeping $x$ and $z$ constant. $G_{y}=e^{xz}\times cos(\frac{y}{z}) \times \frac{1}{z}=\frac{e^{xz} cos(\frac{y}{z})}{z}$ Differentiate the function with respect to $z$ keeping $x$ and $y$ constant. Apply product rule. $G_{z}=xe^{xz}sin(\frac{y}{z})+e^{xz}\times cos(\frac{y}{z})\times \frac{-y}{z^{2}}$ $G_{z}=xe^{xz}sin(\frac{y}{z})-\frac{ye^{xz}cos(\frac{y}{z})}{z^{2}}$ Hence, $G_{x}=ze^{xz}sin(\frac{y}{z})$, $G_{y}=\frac{e^{xz} cos(\frac{y}{z})}{z}$ and $G_{z}=xe^{xz}sin(\frac{y}{z})-\frac{ye^{xz}cos(\frac{y}{z})}{z^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.