Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - Review - Exercises: 13

Answer

$f_{x}=32xy(5y^{3}+2x^{2}y)^{7}$ and $f_{y}=8(5y^{3}+2x^{2}y)^{7} (15y^{2}+2x^{2})$

Work Step by Step

Given: $f(x,y)=(5y^{3}+2x^{2}y)^{8}$ Need to find first partial derivatives $f_{x}$ and $f_{y}$. Differentiate the function with respect to $x$ keeping $y$ constant. $f_{x}=8(5y^{3}+2x^{2}y)^{8-1}\times4xy$ $f_{x}=32xy8(5y^{3}+2x^{2}y)^{7}$ Differentiate the function with respect to $y$ keeping $x$ constant. $f_{y}=8(5y^{3}+2x^{2}y)^{8-1}\times (15y^{2}+2x^{2})$ Hence, $f_{x}=32xy(5y^{3}+2x^{2}y)^{7}$ and $f_{y}=8(5y^{3}+2x^{2}y)^{7} (15y^{2}+2x^{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.