Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 695: 8

Answer

$y =4ex-7e$

Work Step by Step

Given $$x=1+\sqrt{ t},\ \ \ y=e^{t^2} \ \ \ ;(2,e)$$ (a) Since at $(2,e)$, we have \begin{aligned} x&=1+\sqrt{ t}\\ 2&=1+\sqrt{ t}\\ 1&=1+\sqrt{ t}\\ t&=1 \end{aligned} and \begin{aligned} \frac{d y}{d t}=2 te^{t^2}, \ \ \ \ \frac{d x}{d t}=\frac{1}{2\sqrt{t}}\end{aligned} Then \begin{aligned} \frac{d y}{d x}&=\frac{d y / d t}{d x / d t}\\ &=\frac{2 te^{t^2}}{1 /2 \sqrt{t}}\\ &=4 t\sqrt{t}e^{t^2} \end{aligned} Hence the slope at $(2,e)$ \begin{aligned} m&= 4e \end{aligned} The tangent line equation given by \begin{aligned} \frac{y-y_1}{x-x_1}&=m\\ \frac{y-e}{x-2}&=4e\\ y-e&= 4ex-8e\\ y&=4ex-7e \end{aligned} (b) Since $$x=1+\sqrt{ t} \Rightarrow \sqrt{ t}=x-1 \Rightarrow t=(x-1)^2$$ Then \begin{aligned} y&= e^{t^2}\\ &=\left(e^{(x-1)^4}\right) \end{aligned} At $(2,e)$, we have $$y^{\prime}= 4(x-1)^3e^{(x-1)^4}\ \ \ \to \ \ m= 4e$$ Then the tangent line equation given by \begin{aligned} \frac{y-y_1}{x-x_1}&=m\\ \frac{y-e}{x-2}&=4e\\ y-e&= 4ex-8e\\ y&=4ex-7e \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.