Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 695: 12

Answer

\[\frac{dy}{dx}=\frac{2t-1}{3t^2}\] \[\frac{d^2y}{dx^2}=\frac{2(1-t)}{9t^5}\] The Curve is concave down if $t\in(-\infty,0)\cup (1,\infty)$.

Work Step by Step

\[x=t^3+1\;\;,\;\;y=t^2-t\] Differentiate $x$ with respect to $t$ \[\frac{dx}{dt}=3t^2\;\;\;\;\;\ldots (1)\] Differentiate $y$ with respect to $t$ \[\frac{dy}{dt}=2t-1\] \[\Rightarrow \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2t-1}{3t^2}\] \[\frac{dy}{dx}=\frac{2t-1}{3t^2}\] \[\Rightarrow \frac{dy}{dx}=\frac{2}{3t}-\frac{1}{3t^2}\] Differentiate $\displaystyle\frac{dy}{dx}$ with respect to $x$ using chain rule: \[\Rightarrow \frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{2}{3t}-\frac{1}{3t^2})\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{2}{3t}-\frac{1}{3t^2})\cdot\frac{dt}{dx}\] \[\Rightarrow \frac{d^2y}{dx^2}=(\frac{-2}{3t^2}+\frac{2}{3t^3})\cdot\frac{dt}{dx}\] Using (1) \[\Rightarrow \frac{d^2y}{dx^2}=(\frac{-2}{3t^2}+\frac{2}{3t^3})\cdot\frac{1}{3t^2}\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{2(1-t)}{9t^5}\] and $\displaystyle\frac{d^2y}{dx^2}<0$ if $t<0$ and $t>1$ so curve is concave down if $t\in(-\infty,0)\cup (1,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.