Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 695: 13

Answer

\[\frac{dy}{dx}=(1-t)e^{-2t}\] \[\frac{d^2y}{dx^2}=e^{-3t}(2t-3)\] \[t>\frac{3}{2}\]

Work Step by Step

\[x=e^t\;,\;y=te^{-t}\] Differentiate $x$ with respect to $t$: \[\frac{dx}{dt}=e^{t}\;\;\;\;\;\ldots (1)\] Differentiate $y$ with respect to $t$: \[\frac{dy}{dt}=(1)e^{-t}-te^{-t}=(1-t)e^{-t}\] \[\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{(1-t)e^{-t}}{e^{t}}\] \[\Rightarrow \frac{dy}{dx}=(1-t)e^{-2t}\] Differeniate $\displaystyle\frac{dy}{dx}$ with respect to $x$ using chain rule: \[\frac{d^2y}{dx^2}=\frac{d}{dt}\left(\frac{dy}{dx}\right)\cdot\frac{dt}{dx}\] \[\frac{d^2y}{dx^2}=\frac{d}{dt}\left[(1-t)e^{-2t}\right]\cdot\frac{dt}{dx}\] \[\frac{d^2y}{dx^2}=\left[-e^{-2t}-2(1-t)e^{-2t}\right]\cdot\frac{dt}{dx}\] \[\Rightarrow \frac{d^2y}{dx^2}=\left[-e^{-2t}(3-2t)\right]\cdot\frac{dt}{dx}\] Using (1) \[\Rightarrow \frac{d^2y}{dx^2}=\left[-e^{-2t}(3-2t)\right]\cdot(e^{-t})\] \[\Rightarrow \frac{d^2y}{dx^2}=-e^{-3t}(3-2t)\] \[\Rightarrow \frac{d^2y}{dx^2}=e^{-3t}(2t-3)\] $\displaystyle \frac{d^2y}{dx^2}>0$ if $t>\displaystyle\frac{3}{2}$ so The curve is concave up if $t>\displaystyle\frac{3}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.