Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 695: 11

Answer

\[\frac{dy}{dx}=\frac{2t+1}{2t}\] \[\frac{d^2y}{dx^2}=\frac{-1}{4t^3}\] The Curve is concave down if $t<0$.

Work Step by Step

\[x=t^2+1\;\;,\;\;y=t^2+t\] Differentiate $x$ with respect to $t$ \[\frac{dx}{dt}=2t\;\;\;\;\;\ldots (1)\] Differentiate $y$ with respect to $t$ \[\frac{dy}{dt}=2t+1\] \[\Rightarrow \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2t+1}{2t}\] \[\frac{dy}{dx}=\frac{2t+1}{2t}\] \[\Rightarrow \frac{dy}{dx}=1+\frac{1}{2t}\] Differentiate $\displaystyle\frac{dy}{dx}$ with respect to $x$ using chain rule: \[\Rightarrow \frac{d^2y}{dx^2}=\frac{d}{dx}(1+\frac{1}{2t})\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{d}{dt}(1+\frac{1}{2t})\cdot\frac{dt}{dx}\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{-1}{2t^2}\cdot\frac{dt}{dx}\] Using (1) \[\Rightarrow \frac{d^2y}{dx^2}=\frac{-1}{2t^2}\cdot\frac{1}{2t}\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{-1}{4t^3}\] and $\displaystyle\frac{d^2y}{dx^2}<0$ if $t>0$ so curve is concave down if $t<0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.