Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Calculus with Parametric Curves - 10.2 Exercises - Page 695: 14

Answer

\[\frac{dy}{dx}=\frac{e^t}{2t}\] \[\frac{d^2y}{dx^2}=\frac{e^t(t-1)}{4t^3}\] \[t\in (-\infty,0)\cup (1,\infty)\]

Work Step by Step

\[x=t^2+1\;,\;y=e^{t}-1\] Differentiate $x$ with respect to $t$: \[\frac{dx}{dt}=2t\;\;\;\;\;\ldots (1)\] Differentiate $y$ with respect to $t$: \[\frac{dy}{dt}=e^t\] \[\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{e^t}{2t}\] \[\Rightarrow \frac{dy}{dx}=\frac{e^t}{2t}\] Differeniate $\displaystyle\frac{dy}{dx}$ with respect to $x$ using chain rule: \[\frac{d^2y}{dx^2}=\frac{d}{dt}\left(\frac{dy}{dx}\right)\cdot\frac{dt}{dx}\] \[\frac{d^2y}{dx^2}=\frac{d}{dt}\left[\frac{e^t}{2t}\right]\cdot\frac{dt}{dx}\] \[\frac{d^2y}{dx^2}=\frac{1}{2}\left[\frac{e^tt-e^t(1)}{t^2}\right]\cdot\frac{dt}{dx}\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{1}{2}\left[\frac{e^t(t-1)}{t^2}\right]\cdot\frac{dt}{dx}\] Using (1) \[\Rightarrow \frac{d^2y}{dx^2}=\frac{1}{2}\left[\frac{e^t(t-1)}{t^2}\right]\cdot \frac{1}{2t}\] \[\Rightarrow \frac{d^2y}{dx^2}=\frac{e^t(t-1)}{4t^3}\] $\displaystyle \frac{d^2y}{dx^2}>0$ if $t<0$ and $t>1$ so The curve is concave up if $t\in (-\infty,0)\cup (1,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.