Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 9

Answer

$$\frac{1}{4} \cos ^{3} y \sin y+\frac{3}{8} \cos y \sin y+\frac{3}{8} y+C$$

Work Step by Step

Use $$\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x$$ We get \begin{aligned} \int \cos ^{4} y d y &=\frac{1}{4} \cos ^{4-1} y \sin y+\frac{4-1}{4} \int \cos ^{4-2} y d y \\ &=\frac{1}{4} \cos ^{3} y \sin y+\frac{3}{4} \int \cos ^{2} y d y \\ &=\frac{1}{4} \cos ^{3} y \sin y+\frac{3}{4}\left[\frac{1}{2} \cos ^{2-1} y \sin y+\frac{2-1}{1} \int \cos ^{2-2} y d y\right] \\ &=\frac{1}{4} \cos ^{3} y \sin y+\frac{3}{4}\left[\frac{1}{2} \cos y \sin y+\frac{1}{2} y\right]+C \\ &=\frac{1}{4} \cos ^{3} y \sin y+\frac{3}{8} \cos y \sin y+\frac{3}{8} y+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.