Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 3

Answer

$$-\frac{1}{3} \cos ^{3} \theta+\frac{1}{5} \cos ^{5} \theta+c $$

Work Step by Step

\begin{aligned} \int \sin ^{3} \theta \cos ^{2} \theta d \theta &=\int \sin ^{2} \theta \cos ^{2} \theta \sin \theta d \theta \\ &=\int\left(1-\cos ^{2} \theta\right) \sin \theta \cos ^{2} \theta d \theta \\ &=\int\left(\cos ^{2} \theta-\cos ^{4} \theta\right) \sin \theta d \theta \\ &=\int\left(\cos ^{2} \theta\right) \sin \theta d \theta-\int\left(\cos ^{4} \theta\right) \sin \theta d \theta \\ &=-\frac{1}{3} \cos ^{3} \theta+\frac{1}{5} \cos ^{5} \theta+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.