Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 15

Answer

$$ \frac{1}{3}\sec ^3x -\sec x+c$$

Work Step by Step

\begin{align*} \int \tan^3x\sec x dx&= \int \tan^2 x \tan x\sec x dx\\ &= \int (\sec^2 x-1 ) \tan x\sec x dx \end{align*} Let $$u=\sec x\ \ \to \ du=\tan x\sec x dx $$ Then \begin{align*} \int \tan^3x\sec x dx&= \int \tan^2 x \tan x\sec x dx\\ &= \int (\sec^2 x-1 ) \tan x\sec x dx \\ &= \int (u^2-1)du\\ &=\frac{1}{3}u^3 -u+c\\ &= \frac{1}{3}\sec ^3x -\sec x+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.