Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 403: 26

Answer

$$\frac{1}{21} \cos ^{6} 3 x \sin 3 x+\frac{2}{35} \cos ^{4} 3 x \sin 3 x+\frac{8}{105} \cos ^{2} 3 x \sin 3 x+\frac{16}{105} \sin 3 x+c$$

Work Step by Step

Given $$\int \cos ^{7} 3 x d x=\frac{1}{3} \int \cos ^{7} u d u $$ Let $$u=3x\ \ \ \Rightarrow \ \ du=3dx $$ By using $$\int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x$$ we get \begin{align*} \int \cos ^{7} 3 x d x&=\frac{1}{3} \int \cos ^{7} u d u\\ &=\frac{1}{21} \cos ^{6} u \sin u+\frac{6}{21} \int \cos ^{5} u d u (12), \ \ n=7\\ &=\frac{1}{21} \cos ^{6} u \sin u+\frac{2}{7}\left(\frac{1}{5} \cos ^{4} u \sin u+\frac{4}{5} \int \cos ^{3} u d u\right),\ \ n=5 \\ &=\frac{1}{21} \cos ^{6} u \sin u+\frac{2}{5} \cos ^{4} u \sin u+\frac{8}{35}\left(\frac{1}{3} \cos ^{2} u \sin u+\frac{2}{3} \int \cos u d u\right) ,\ \ n=3\\ &= \frac{1}{21} \cos ^{6} u \sin u+\frac{2}{35} \cos ^{4} u \sin u+\frac{8}{105} \cos ^{2} u \sin u+\frac{16}{105} \sin u+c\\ &=\frac{1}{21} \cos ^{6} 3 x \sin 3 x+\frac{2}{35} \cos ^{4} 3 x \sin 3 x+\frac{8}{105} \cos ^{2} 3 x \sin 3 x+\frac{16}{105} \sin 3 x+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.