Answer
$$ -\ln |\sqrt{2}-1|$$
Work Step by Step
\begin{aligned}
\int_{\pi / 4}^{\pi / 2} \frac{d x}{\sin x}&=\int_{\pi / 4}^{\pi / 2} \csc x d x \\
&= \ln |\csc x-\cot x|\bigg|_{\pi / 4} ^{\pi / 2} \\
&= \ln |1-0|-\ln |\sqrt{2}-1| \\&= -\ln |\sqrt{2}-1|
\end{aligned}