Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.5 The Fundamental Theorem of Calculus, Part II - Exercises - Page 262: 3

Answer

$G(1)=0$ $G'(1)=-1$ $G'(2)=2$ $G(x)=\frac{x^{3}}{3}-2x+\frac{5}{3}$

Work Step by Step

$$G(x)=\int_{1}^{x}(t^{2}-2)dt$$ $$G(1)=\int_{1}^{1}(t^{2}-2)dt=0$$ -------------------------------------------------------------------------- $$G(x)=\int_{1}^{x}(t^{2}-2)dt$$ Using the $FTC II$ it follows: $$G'(x)=x^{2}-2$$ $$G'(1)=1^{2}-2=-1$$ $$G'(2)=2^{2}-2=2$$ ----------------------------------------------------------------- $$G(x)=\int_{1}^{x}(t^{2}-2)dt$$ Using the $FTC I$ it follows: $$G(x)=[\frac{t^{3}}{3}-2t]_{1}^{x}$$ $$G(x)=\frac{x^{3}}{3}-2x-(\frac{1^{3}}{3}-2\cdot 1)$$ $$G(x)=\frac{x^{3}}{3}-2x+\frac{5}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.