Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.2 The Definite Integral - Exercises - Page 246: 79

Answer

$$0 \leq \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \frac{1}{\sqrt{2}}$$

Work Step by Step

Since $\frac{d}{dx}\frac{\sin x}{x}=\frac{x \cos x-\sin x}{x^{2}}<0$ on $[\pi/4,\pi/2]$, then $\cos x $ is decreasing and $$f(\pi/2)\leq \frac{\sin x}{x} \leq f(\pi/4) $$ Hence, by the comparison theorem \begin{aligned} & \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \int_{\pi / 4}^{\pi / 2} f\left(\frac{\pi}{4}\right) d x \\ 0 \leq & \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \int_{\pi / 4}^{\pi / 2} \frac{\sin (\pi / 4)}{\pi / 4} d x \\ 0 & \leq \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \int_{\pi / 4}^{\pi / 2} \frac{1 / \sqrt{2}}{\pi / 4} d x \\ 0 & \leq \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \frac{4}{\pi \sqrt{2}}\left(\frac{\pi}{2}-\frac{\pi}{4}\right) \\ 0 & \leq \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \frac{4}{\pi \sqrt{2}}\left(\frac{\pi}{4}\right) \\ 0 & \leq \int_{\pi / 4}^{\pi / 2} f(x) d x \leq \frac{1}{\sqrt{2}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.