Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - Chapter Review Exercises - Page 970: 2

Answer

The required vector field is ${\bf{F}}\left( {x,y} \right) = \left( {\dfrac{y}{{\sqrt {{x^2} + {y^2}} }}, - \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)$ or ${\bf{F}}\left( {x,y} \right) = \left( { - \dfrac{y}{{\sqrt {{x^2} + {y^2}} }},\dfrac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)$.

Work Step by Step

Write ${\bf{F}}\left( {x,y} \right) = \left( {{F_1},{F_2}} \right)$. Since $||{\bf{F}}\left( {x,y} \right)|| = 1$, so $||{\bf{F}}\left( {x,y} \right)|| = \sqrt {\left( {{F_1},{F_2}} \right)\cdot\left( {{F_1},{F_2}} \right)} = {F_1}^2 + {F_2}^2 = 1$ Since ${\bf{F}}\left( {x,y} \right)$ is orthogonal to $G\left( {x,y} \right) = \left( {x,y} \right)$ for all $x$, $y$, so ${\bf{F}}\left( {x,y} \right)\cdot G\left( {x,y} \right) = \left( {{F_1},{F_2}} \right)\cdot\left( {x,y} \right) = x{F_1} + y{F_2} = 0$ From this equation with the assumptions that $x \ne 0$ and $y \ne 0$, we obtain ${F_2} = - \dfrac{x}{y}{F_1}$. Substituting it into ${F_1}^2 + {F_2}^2 = 1$ gives ${F_1}^2 + {\left( { - \dfrac{x}{y}{F_1}} \right)^2} = 1$ ${F_1}^2\left( {1 + \dfrac{{{x^2}}}{{{y^2}}}} \right) = 1$ ${F_1}^2\left( {\dfrac{{{x^2} + {y^2}}}{{{y^2}}}} \right) = 1$ Therefore, ${F_1} = \pm \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}$. Substituting ${F_1} = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}$ into ${F_1}^2 + {F_2}^2 = 1$ gives $\dfrac{{{y^2}}}{{{x^2} + {y^2}}} + {F_2}^2 = 1$ ${F_2}^2 = 1 - \dfrac{{{y^2}}}{{{x^2} + {y^2}}} = \dfrac{{{x^2}}}{{{x^2} + {y^2}}}$ Therefore, ${F_2} = \pm \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}$. Since ${F_2} = - \dfrac{x}{y}{F_1}$ for all $x$, $y$; we conclude that ${F_1}$ and ${F_2}$ have different signs. The required vector field is ${\bf{F}}\left( {x,y} \right) = \left( {\dfrac{y}{{\sqrt {{x^2} + {y^2}} }}, - \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)$ or ${\bf{F}}\left( {x,y} \right) = \left( { - \dfrac{y}{{\sqrt {{x^2} + {y^2}} }},\dfrac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.