Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - Chapter Review Exercises - Page 970: 15

Answer

We show that $curl\left( {\left( {{F_1}\left( x \right),{F_2}\left( y \right),{F_3}\left( z \right)} \right)} \right) = {\bf{0}}$ For ${\bf{F}}\left( {x,y,z} \right) = \left( {{x^2} + {y^2},\ln y + {z^2},{z^3}\sin \left( {{z^2}} \right){{\rm{e}}^{{z^3}}}} \right)$, we get $curl\left( {{\bf{F}}\left( {x,y,z} \right)} \right) = - 2z{\bf{i}} - 2y{\bf{k}}$

Work Step by Step

1. Suppose that ${\bf{F}}\left( {x,y,z} \right) = \left( {{F_1}\left( x \right),{F_2}\left( y \right),{F_3}\left( z \right)} \right)$. Evaluate the curl of ${\bf{F}}$: $curl\left( {{\bf{F}}\left( {x,y,z} \right)} \right) = curl\left( {\left( {{F_1}\left( x \right),{F_2}\left( y \right),{F_3}\left( z \right)} \right)} \right)$ $curl\left( {\bf{F}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{F_1}\left( x \right)}&{{F_2}\left( y \right)}&{{F_3}\left( z \right)} \end{array}} \right| = {\bf{0}}$ So, $curl\left( {\left( {{F_1}\left( x \right),{F_2}\left( y \right),{F_3}\left( z \right)} \right)} \right) = {\bf{0}}$. 2. We are given ${\bf{F}}\left( {x,y,z} \right) = \left( {{x^2} + {y^2},\ln y + {z^2},{z^3}\sin \left( {{z^2}} \right){{\rm{e}}^{{z^3}}}} \right)$ Write ${\bf{F}}\left( {x,y,z} \right) = \left( {{x^2},\ln y,{z^3}\sin \left( {{z^2}} \right){{\rm{e}}^{{z^3}}}} \right) + \left( {{y^2},{z^2},0} \right)$ Evaluate the curl of ${\bf{F}}$: $curl\left( {{\bf{F}}\left( {x,y,z} \right)} \right) = curl\left( {\left( {{x^2},\ln y,{z^3}\sin \left( {{z^2}} \right){{\rm{e}}^{{z^3}}}} \right)} \right) + curl\left( {\left( {{y^2},{z^2},0} \right)} \right)$ If we consider ${F_1}\left( x \right) = {x^2}$, ${\ \ }$ ${F_2}\left( y \right) = \ln y$, ${\ \ }$ ${F_3}\left( z \right) = {z^3}\sin \left( {{z^2}} \right){{\rm{e}}^{{z^3}}}$, then by the result in part (1): $curl\left( {\left( {{x^2},\ln y,{z^3}\sin \left( {{z^2}} \right){{\rm{e}}^{{z^3}}}} \right)} \right) = {\bf{0}}$ Thus, $curl\left( {{\bf{F}}\left( {x,y,z} \right)} \right) = curl\left( {\left( {{y^2},{z^2},0} \right)} \right)$ $curl\left( {{\bf{F}}\left( {x,y,z} \right)} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{y^2}}&{{z^2}}&0 \end{array}} \right| = - 2z{\bf{i}} - 2y{\bf{k}}$ So, $curl\left( {{\bf{F}}\left( {x,y,z} \right)} \right) = - 2z{\bf{i}} - 2y{\bf{k}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.