Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - Chapter Review Exercises - Page 970: 17

Answer

We verify the identity: $div\left( {curl\left( {\bf{F}} \right)} \right) = 0$ $div\left( {curl\left( {\bf{G}} \right)} \right) = 0$

Work Step by Step

1. For ${\bf{F}} = \left( {xz,y{{\rm{e}}^x},yz} \right)$. $curl\left( {\bf{F}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {xz}&{y{{\rm{e}}^x}}&{yz} \end{array}} \right|$ $curl\left( {\bf{F}} \right) = z{\bf{i}} + x{\bf{j}} + y{{\rm{e}}^x}{\bf{k}}$ $div\left( {curl\left( {\bf{F}} \right)} \right) = \frac{\partial }{{\partial x}}z + \frac{\partial }{{\partial y}}x + \frac{\partial }{{\partial z}}\left( {y{{\rm{e}}^x}} \right) = 0$ 2. For ${\bf{G}} = \left( {{z^2},x{y^3},{x^2}y} \right)$. $curl\left( {\bf{G}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {{z^2}}&{x{y^3}}&{{x^2}y} \end{array}} \right|$ $curl\left( {\bf{G}} \right) = {x^2}{\bf{i}} - \left( {2xy - 2z} \right){\bf{j}} + {y^3}{\bf{k}}$ $div\left( {curl\left( {\bf{G}} \right)} \right) = \frac{\partial }{{\partial x}}{x^2} + \frac{\partial }{{\partial y}}\left( { - 2xy + 2z} \right) + \frac{\partial }{{\partial z}}{y^3} = 2x - 2x = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.