Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - Chapter Review Exercises - Page 970: 13

Answer

$div\left( {\bf{F}} \right) = - 6\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + \left( {4{x^2} + 4{y^2} + 4{z^2}} \right)\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$ $curl\left( {\bf{F}} \right) = {\bf{0}}$

Work Step by Step

We have ${\bf{F}} = \left( {{F_1},{F_2},{F_3}} \right) = \nabla \left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$. So, ${\bf{F}} = \left( {{F_1},{F_2},{F_3}} \right) = {\bf{i}}\frac{\partial }{{\partial x}}\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + {\bf{j}}\frac{\partial }{{\partial y}}\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + {\bf{k}}\frac{\partial }{{\partial z}}\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$ ${\bf{F}} = \left( {{F_1},{F_2},{F_3}} \right)$ $ = - 2x\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right){\bf{i}}$ $ - 2y\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right){\bf{j}}$ $ - 2z\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right){\bf{k}}$ 1. $div\left( {\bf{F}} \right) = \frac{{\partial {F_1}}}{{\partial x}} + \frac{{\partial {F_2}}}{{\partial y}} + \frac{{\partial {F_3}}}{{\partial z}}$ $div\left( {\bf{F}} \right) = - 2\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + 4{x^2}\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$ $ - 2\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + 4{y^2}\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$ $ - 2\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + 4{z^2}\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$ $div\left( {\bf{F}} \right) = - 6\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) + \left( {4{x^2} + 4{y^2} + 4{z^2}} \right)\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)$ 2. $curl\left( {\bf{F}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ { - 2x\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)}&{ - 2y\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)}&{ - 2z\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)} \end{array}} \right|$ $curl\left( {\bf{F}} \right) = \left( {4yz\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) - 4yz\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)} \right){\bf{i}}$ $ - \left( {4xz\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) - 4xz\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)} \right){\bf{j}}$ $ + \left( {4xy\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right) - 4xy\left( {{{\rm{e}}^{ - {x^2} - {y^2} - {z^2}}}} \right)} \right){\bf{k}}$ $curl\left( {\bf{F}} \right) = {\bf{0}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.