Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 935: 75

Answer

Prove: $\mathop \smallint \limits_c^d f\left( {{{\bf{r}}_1}\left( t \right)} \right)||{{\bf{r}}_1}'\left( t \right)||{\rm{d}}t = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$

Work Step by Step

We have the re-parametrization ${{\bf{r}}_1}\left( t \right) = {\bf{r}}\left( {\varphi \left( t \right)} \right)$, where $\varphi \left( t \right)$ is an increasing function. Taking the derivative of ${{\bf{r}}_1}\left( t \right)$, we get ${{\bf{r}}_1}'\left( t \right) = {\bf{r}}'\left( {\varphi \left( t \right)} \right)\varphi '\left( t \right)$ $||{{\bf{r}}_1}'\left( t \right)|| = ||{\bf{r}}'\left( {\varphi \left( t \right)} \right)||||\varphi '\left( t \right)||$ Since $\varphi \left( t \right)$ is an increasing function, we can just write $||{{\bf{r}}_1}'\left( t \right)|| = ||{\bf{r}}'\left( {\varphi \left( t \right)} \right)||\varphi '\left( t \right)$ Substituting this in the scalar line integral with parametrization ${{\bf{r}}_1}\left( t \right)$, we obtain $\mathop \smallint \limits_c^d f\left( {{{\bf{r}}_1}\left( t \right)} \right)||{{\bf{r}}_1}'\left( t \right)||{\rm{d}}t = \mathop \smallint \limits_c^d f\left( {{\bf{r}}\left( {\varphi \left( t \right)} \right)} \right)||{\bf{r}}'\left( {\varphi \left( t \right)} \right)||\varphi '\left( t \right){\rm{d}}t$ But $d\left( {\varphi \left( t \right)} \right) = \varphi '\left( t \right){\rm{d}}t$. So, $\mathop \smallint \limits_c^d f\left( {{{\bf{r}}_1}\left( t \right)} \right)||{{\bf{r}}_1}'\left( t \right)||{\rm{d}}t = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( {\varphi \left( t \right)} \right)} \right)||{\bf{r}}'\left( {\varphi \left( t \right)} \right)||{\rm{d}}\left( {\varphi \left( t \right)} \right)$ where $a = \varphi \left( c \right)$ and $b = \varphi \left( d \right)$. By replacing the variable $\varphi \left( t \right)$ on the right-hand side by a dummy variable $t$, we obtain $\mathop \smallint \limits_c^d f\left( {{{\bf{r}}_1}\left( t \right)} \right)||{{\bf{r}}_1}'\left( t \right)||{\rm{d}}t = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ which is to be proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.