Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 935: 67

Answer

The flux across the parabola is ${\rm{e}} - 1$.

Work Step by Step

The parabola $y = {x^2}$ for $0 \le x \le 1$, oriented left to right can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,{t^2}} \right)$, ${\ \ \ }$ for $0 \le t \le 1$ So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{{\rm{e}}^{{t^2}}},2t - 1} \right)$ The vectors that are normal to the parabola is given by ${\bf{N}}\left( t \right) = \left( {y'\left( t \right), - x'\left( t \right)} \right) = \left( {2t, - 1} \right)$ Using Eq. (10), we calculate the flux across the parabola, oriented left to right: Flux across $C = $ $\mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{N}}\left( t \right){\rm{d}}t$ Flux across $C = $ $\mathop \smallint \limits_0^1 \left( {{{\rm{e}}^{{t^2}}},2t - 1} \right)\cdot\left( {2t, - 1} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \left( {2t{{\rm{e}}^{{t^2}}} - 2t + 1} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 {{\rm{e}}^{{t^2}}}{\rm{d}}\left( {{t^2}} \right) - 2\mathop \smallint \limits_0^1 t{\rm{d}}t + \mathop \smallint \limits_0^1 {\rm{d}}t$ $ = \left( {{{\rm{e}}^{{t^2}}}|_0^1 - {t^2}|_0^1 + t|_0^1} \right)$ $ = {\rm{e}} - 1 - 1 + 1$ $ = {\rm{e}} - 1$ So, the flux across the parabola is ${\rm{e}} - 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.