Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 935: 65

Answer

The flux across the curve is $18$.

Work Step by Step

The line segment $C$ from $\left( {3,0} \right)$ to $\left( {0,3} \right)$, oriented upward, can be parametrized by ${\bf{r}}\left( t \right) = \left( {3,0} \right) + t\left( {\left( {0,3} \right) - \left( {3,0} \right)} \right)$ ${\bf{r}}\left( t \right) = \left( { - 3t + 3,3t} \right)$, ${\ \ \ }$ for $0 \le t \le 1$ So, ${\bf{F}}\left( {{\bf{r}}\left( t \right)} \right) = \left( {{{\left( { - 3t + 3} \right)}^2},9{t^2}} \right)$ The vectors that are normal to $C$ is given by ${\bf{N}}\left( t \right) = \left( {y'\left( t \right), - x'\left( t \right)} \right) = \left( {3,3} \right)$ Using Eq. (10), we calculate the flux across $C$, oriented clockwise: Flux across $C = $ $\mathop \smallint \limits_a^b {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{N}}\left( t \right){\rm{d}}t$ Flux across $C = $ $\mathop \smallint \limits_0^1 \left( {{{\left( { - 3t + 3} \right)}^2},9{t^2}} \right)\cdot\left( {3,3} \right){\rm{d}}t$ Flux across $C = $ $\mathop \smallint \limits_0^1 \left( {27{t^2} - 54t + 27 + 27{t^2}} \right){\rm{d}}t$ $ = \mathop \smallint \limits_0^1 \left( {54{t^2} - 54t + 27} \right){\rm{d}}t$ $ = 18{t^3} - 27{t^2} + 27t|_0^1 = 18$ So, the flux across $C$ is $18$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.