Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Exercises - Page 935: 69

Answer

We prove that $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{1}{2}\left( {{c^2} - {a^2}} \right)$

Work Step by Step

Let $C$ be any path from $\left( {a,b} \right)$ to $\left( {c,d} \right)$ parametrized by ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$. Calculate $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ using Eq. (8): $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{\left( {a,b} \right)}^{\left( {c,d} \right)} {\bf{F}}\left( {{\bf{r}}\left( t \right)} \right)\cdot{\bf{r}}'\left( t \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{\left( {a,b} \right)}^{\left( {c,d} \right)} \left( {x\left( t \right),0} \right)\cdot\left( {x'\left( t \right),y'\left( t \right)} \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{\left( {a,b} \right)}^{\left( {c,d} \right)} x\left( t \right)x'\left( t \right){\rm{d}}t$ Since ${\rm{d}}x = x'\left( t \right){\rm{d}}t$, the integral becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_a^c x{\rm{d}}x = \frac{1}{2}{x^2}|_a^c = \frac{1}{2}\left( {{c^2} - {a^2}} \right)$ Hence, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \frac{1}{2}\left( {{c^2} - {a^2}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.