Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 31

Answer

The curvature at $t = \pi $ is $\kappa \left( \pi \right) = \frac{\pi }{{2\sqrt 2 }}$

Work Step by Step

We have $\left( {x\left( t \right),y\left( t \right)} \right) = \left( {t\cos t,\sin t} \right)$. The derivatives are $\left( {x'\left( t \right),y'\left( t \right)} \right) = \left( {\cos t - t\sin t,\cos t} \right)$ $\left( {x{\rm{''}}\left( t \right),y{\rm{''}}\left( t \right)} \right) = \left( { - \sin t - \sin t - t\cos t, - \sin t} \right)$ $\left( {x{\rm{''}}\left( t \right),y{\rm{''}}\left( t \right)} \right) = \left( { - 2\sin t - t\cos t, - \sin t} \right)$ Using Eq. (11) we compute the curvature $\kappa \left( t \right) = \frac{{\left| {x'\left( t \right)y{\rm{''}}\left( t \right) - x{\rm{''}}\left( t \right)y'\left( t \right)} \right|}}{{{{\left( {x'{{\left( t \right)}^2} + y'{{\left( t \right)}^2}} \right)}^{3/2}}}}$ $\kappa \left( t \right) = \frac{{\left| {\left( {\cos t - t\sin t} \right)\left( { - \sin t} \right) - \left( { - 2\sin t - t\cos t} \right)\cos t} \right|}}{{{{\left( {{{\left( {\cos t - t\sin t} \right)}^2} + {{\cos }^2}t} \right)}^{3/2}}}}$ $\kappa \left( t \right) = \frac{{\left| { - \cos t\sin t + t{{\sin }^2}t + 2\sin t\cos t + t{{\cos }^2}t} \right|}}{{{{\left( {{{\cos }^2}t - 2t\cos t\sin t + {t^2}{{\sin }^2}t + {{\cos }^2}t} \right)}^{3/2}}}}$ $\kappa \left( t \right) = \frac{{\left| {\cos t\sin t + t} \right|}}{{{{\left( {2{{\cos }^2}t - 2t\cos t\sin t + {t^2}{{\sin }^2}t} \right)}^{3/2}}}}$ The curvature at $t = \pi $ is $\kappa \left( \pi \right) = \frac{\pi }{{{{\left( 2 \right)}^{3/2}}}} = \frac{\pi }{{2\sqrt 2 }}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.