Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 21

Answer

The curvature is $\kappa \left( t \right) = csch {\ }t$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t - \tanh t,secht} \right)$. So, the derivatives are ${\bf{r}}'\left( t \right) = \left( {1 - sec{h^2}t, - secht\tanh t} \right)$ Since ${\tanh ^2}t + sec{h^2}t = 1$, so ${\bf{r}}'\left( t \right) = \left( {{{\tanh }^2}t, - secht\tanh t} \right)$ ${\bf{r}}{\rm{''}}\left( t \right) = \left( {2sec{h^2}t\tanh t, - sec{h^3}t + secht{{\tanh }^2}t} \right)$ By Eq. (3) of Theorem 1, the curvature is given by $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ To apply Theorem 1, we treat ${\bf{r}}'\left( t \right)$ and ${\bf{r}}{\rm{''}}\left( t \right)$ as vectors in ${\mathbb{R}^3}$ by setting the $z$-components equal to zero. Thus, ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)$ $ = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {{{\tanh }^2}t}&{ - secht\tanh t}&0\\ {2sec{h^2}t\tanh t}&{ - sec{h^3}t + secht{{\tanh }^2}t}&0 \end{array}} \right|$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = ({\tanh ^2}t\left( { - sec{h^3}t + secht{{\tanh }^2}t} \right)$ $ + \left( {2sec{h^2}t\tanh t} \right)\left( {secht\tanh t} \right)){\bf{k}}$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = ( - {\tanh ^2}tsec{h^3}t + secht{\tanh ^4}t$ $ + 2sec{h^3}t{\tanh ^2}t){\bf{k}}$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left( {secht{{\tanh }^4}t + sec{h^3}t{{\tanh }^2}t} \right){\bf{k}}$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = secht{\tanh ^2}t\left( {{{\tanh }^2}t + sec{h^2}t} \right){\bf{k}}$ Since ${\tanh ^2}t + sec{h^2}t = 1$, so ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = secht{\tanh ^2}t{\bf{k}}$ So, $||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)|| = secht{\tanh ^2}t$. Next, we evaluate $||{\bf{r}}'\left( t \right)||$ $||{\bf{r}}'\left( t \right)|{|^2} = \left( {{{\tanh }^2}t, - secht\tanh t} \right)\cdot\left( {{{\tanh }^2}t, - secht\tanh t} \right)$ $||{\bf{r}}'\left( t \right)|{|^2} = {\tanh ^4}t + sec{h^2}t{\tanh ^2}t$ $||{\bf{r}}'\left( t \right)|{|^2} = {\tanh ^2}t\left( {{{\tanh }^2}t + sec{h^2}t} \right)$ Since ${\tanh ^2}t + sec{h^2}t = 1$, so $||{\bf{r}}'\left( t \right)|{|^2} = {\tanh ^2}t$ So, $||{\bf{r}}'\left( t \right)|| = \tanh t$. Substituting these values in $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ gives $\kappa \left( t \right) = \frac{{secht{{\tanh }^2}t}}{{{{\tanh }^3}t}} = \frac{{secht}}{{\tanh t}} = csch{\ }t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.