Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 24

Answer

The maximum of the curvature occurs at $x = - \frac{1}{2}\ln 2$. Thus, the point of maximum curvature is $\left( {x,\kappa \left( x \right)} \right) = \left( { - \frac{1}{2}\ln 2,\frac{2}{{3\sqrt 3 }}} \right)$ on the $x\kappa$-plane.

Work Step by Step

We have $y = {{\rm{e}}^x}$. Write $y = f\left( x \right) = {{\rm{e}}^x}$. So, $f'\left( x \right) = {{\rm{e}}^x}$ and $f{\rm{''}}\left( x \right) = {{\rm{e}}^x}$. By Eq. (5) of Theorem 2, the curvature is given by $\kappa \left( x \right) = \frac{{\left| {f{\rm{''}}\left( x \right)} \right|}}{{{{\left( {1 + f'{{\left( x \right)}^2}} \right)}^{3/2}}}}$ $\kappa \left( x \right) = \frac{{\left| {{{\rm{e}}^x}} \right|}}{{{{\left( {1 + {{\rm{e}}^{2x}}} \right)}^{3/2}}}} = \frac{{{{\rm{e}}^x}}}{{{{\left( {1 + {{\rm{e}}^{2x}}} \right)}^{3/2}}}}$ The derivatives are $\kappa '\left( x \right) = \frac{{ - 2{{\rm{e}}^{3x}} + {{\rm{e}}^x}}}{{{{\left( {1 + {{\rm{e}}^{2x}}} \right)}^{5/2}}}}$, ${\ \ }$ $\kappa {\rm{''}}\left( x \right) = \frac{{4{{\rm{e}}^{5x}} - 10{{\rm{e}}^{3x}} + {{\rm{e}}^x}}}{{{{\left( {1 + {{\rm{e}}^{2x}}} \right)}^{7/2}}}}$ We solve the equation $\kappa '\left( x \right) = 0$ to find the critical points. So, $\frac{{ - 2{{\rm{e}}^{3x}} + {{\rm{e}}^x}}}{{{{\left( {1 + {{\rm{e}}^{2x}}} \right)}^{5/2}}}} = 0$ The denominator is nonvanishing, so $ - 2{{\rm{e}}^{3x}} + {{\rm{e}}^x} = 0$ ${{\rm{e}}^x}\left( {1 - 2{{\rm{e}}^{2x}}} \right) = 0$ Since ${{\rm{e}}^x} \ne 0$, so $1 - 2{{\rm{e}}^{2x}} = 0$. ${{\rm{e}}^{2x}} = \frac{1}{2}$, ${\ \ \ }$ $2x = \ln \frac{1}{2}$ Thus, the critical point is at $x = - \frac{1}{2}\ln 2$. Substituting $x = - \frac{1}{2}\ln 2$ in $\kappa {\rm{''}}\left( x \right)$ gives $\kappa {\rm{''}}\left( { - \frac{1}{2}\ln 2} \right) = - \frac{8}{{9\sqrt 3 }}$. Since $\kappa {\rm{''}}\left( { - \frac{1}{2}\ln 2} \right) < 0$, thus, the maximum of the curvature occurs at $x = - \frac{1}{2}\ln 2$. Substituting $x = - \frac{1}{2}\ln 2$ in $\kappa \left( x \right)$ gives $\kappa \left( { - \frac{1}{2}\ln 2} \right) = \frac{2}{{3\sqrt 3 }}$. Thus, the point of maximum curvature is $\left( {x,\kappa \left( x \right)} \right) = \left( { - \frac{1}{2}\ln 2,\frac{2}{{3\sqrt 3 }}} \right)$ on the $x\kappa$-plane.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.