Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.4 Curvature - Exercises - Page 735: 19

Answer

(1) the curvature $\kappa$ at $t = \frac{\pi }{3}$ is $ \simeq 4.54$ (2) the curvature $\kappa$ at $t = \frac{\pi }{2}$ is $ \simeq 0.2$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {2\sin t,\cos 3t,t} \right)$. So, the derivatives are ${\bf{r}}'\left( t \right) = \left( {2\cos t, - 3\sin 3t,1} \right)$ ${\bf{r}}{\rm{''}}\left( t \right) = \left( { - 2\sin t, - 9\cos 3t,0} \right)$ By Eq. (3) of Theorem 1, the curvature is given by $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ (1) The curvature at $t = \frac{\pi }{3}$ Evaluate $||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||$ at $t = \frac{\pi }{3}$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {2\cos t}&{ - 3\sin 3t}&1\\ { - 2\sin t}&{ - 9\cos 3t}&0 \end{array}} \right|$ ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left( {9\cos 3t} \right){\bf{i}} - \left( {2\sin t} \right){\bf{j}}$ $ + \left( { - 18\cos t\cos 3t - 6\sin t\sin 3t} \right){\bf{k}}$ ${\bf{r}}'\left( {\frac{\pi }{3}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{3}} \right) = - 9{\bf{i}} - \sqrt 3 {\bf{j}} + 9{\bf{k}}$ $||{\bf{r}}'\left( {\frac{\pi }{3}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{3}} \right)|{|^2} = 81 + 3 + 81 = 165$ $||{\bf{r}}'\left( {\frac{\pi }{3}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{3}} \right)|| = \sqrt {165} $ Evaluate $||{\bf{r}}'\left( t \right)||$ at $t = \frac{\pi }{3}$ $||{\bf{r}}'\left( t \right)|{|^2} = \left( {2\cos t, - 3\sin 3t,1} \right)\cdot\left( {2\cos t, - 3\sin 3t,1} \right)$ $||{\bf{r}}'\left( t \right)|{|^2} = 4{\cos ^2}t + 9{\sin ^2}3t + 1$ $||{\bf{r}}'\left( {\frac{\pi }{3}} \right)|{|^2} = 4\cdot\frac{1}{4} + 9\cdot0 + 1 = 2$ $||{\bf{r}}'\left( {\frac{\pi }{3}} \right)|| = \sqrt 2 $ So, the curvature $\kappa$ at $t = \frac{\pi }{3}$ is $\kappa \left( {\frac{\pi }{3}} \right) = \frac{{||{\bf{r}}'\left( {\frac{\pi }{3}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{3}} \right)||}}{{||{\bf{r}}'\left( {\frac{\pi }{3}} \right)|{|^3}}}$ $\kappa \left( {\frac{\pi }{3}} \right) = \frac{{\sqrt {165} }}{{{2^{3/2}}}} \simeq 4.54$ (2) The curvature at $t = \frac{\pi }{2}$ Evaluate $||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||$ at $t = \frac{\pi }{2}$ We have from earlier result: ${\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right) = \left( {9\cos 3t} \right){\bf{i}} - \left( {2\sin t} \right){\bf{j}}$ $ + \left( { - 18\cos t\cos 3t - 6\sin t\sin 3t} \right){\bf{k}}$ So, ${\bf{r}}'\left( {\frac{\pi }{2}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{2}} \right) = - 2{\bf{j}} + 6{\bf{k}}$ $||{\bf{r}}'\left( {\frac{\pi }{2}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{2}} \right)|{|^2} = 4 + 36 = 40$ $||{\bf{r}}'\left( {\frac{\pi }{2}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{2}} \right)|| = 2\sqrt {10} $ Evaluate $||{\bf{r}}'\left( t \right)||$ at $t = \frac{\pi }{2}$ We have from earlier result: $||{\bf{r}}'\left( t \right)|{|^2} = 4{\cos ^2}t + 9{\sin ^2}3t + 1$ So, $||{\bf{r}}'\left( {\frac{\pi }{2}} \right)|{|^2} = 0 + 9\cdot1 + 1 = 10$ $||{\bf{r}}'\left( {\frac{\pi }{2}} \right)|| = \sqrt {10} $ So, the curvature $\kappa$ at $t = \frac{\pi }{2}$ is $\kappa \left( {\frac{\pi }{2}} \right) = \frac{{||{\bf{r}}'\left( {\frac{\pi }{2}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{2}} \right)||}}{{||{\bf{r}}'\left( {\frac{\pi }{2}} \right)|{|^3}}}$ $\kappa \left( {\frac{\pi }{2}} \right) = \frac{{2\sqrt {10} }}{{{{10}^{3/2}}}} \simeq 0.2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.