Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 36

Answer

Arc length integrals for the two parametrizations: ${s_1}\left( t \right) = \mathop \smallint \limits_0^t \sqrt {1 + 9{u^4}} {\rm{d}}u$ ${s_2}\left( t \right) = 3\mathop \smallint \limits_0^t {u^2}\sqrt {1 + 9{u^{12}}} {\rm{d}}u$ They yield the same result.

Work Step by Step

We have two parametrizations of the same curve $y = {x^3}$ for $0 \le x \le 8$, that is, ${{\bf{r}}_1}\left( t \right) = \left( {t,{t^3}} \right)$ ${\ \ }$ and ${\ \ }$ ${{\bf{r}}_2}\left( t \right) = \left( {{t^3},{t^9}} \right)$ The derivatives of the two parametrizations are ${{\bf{r}}_1}'\left( t \right) = \left( {1,3{t^2}} \right)$ ${\ \ }$ and ${\ \ }$ ${{\bf{r}}_2}'\left( t \right) = \left( {3{t^2},9{t^8}} \right)$ The speeds of the two parametrizations are $||{{\bf{r}}_1}'\left( t \right)|| = \sqrt {1 + 9{t^4}} $ and $||{{\bf{r}}_2}'\left( t \right)|| = \sqrt {\left( {3{t^2},9{t^8}} \right)\cdot\left( {3{t^2},9{t^8}} \right)} $ $||{{\bf{r}}_2}'\left( t \right)|| = \sqrt {9{t^4} + 81{t^{16}}} = \sqrt {9{t^4}\left( {1 + 9{t^{12}}} \right)} $ $||{{\bf{r}}_2}'\left( t \right)|| = 3{t^2}\sqrt {1 + 9{t^{12}}} $ Evaluate the arc length functions: ${s_1}\left( t \right) = \mathop \smallint \limits_0^t ||{{\bf{r}}_1}'\left( u \right)||{\rm{d}}u$ (1) ${\ \ \ }$ ${s_1}\left( t \right) = \mathop \smallint \limits_0^t \sqrt {1 + 9{u^4}} {\rm{d}}u$ and ${s_2}\left( t \right) = \mathop \smallint \limits_0^t ||{{\bf{r}}_2}'\left( u \right)||{\rm{d}}u$ ${s_2}\left( t \right) = 3\mathop \smallint \limits_0^t {u^2}\sqrt {1 + 9{u^{12}}} {\rm{d}}u$ Write $v = {u^3}$, so $dv = 3{u^2}du$. The integral becomes (2) ${\ \ \ }$ ${s_2}\left( t \right) = \mathop \smallint \limits_0^t \sqrt {1 + 9{v^4}} {\rm{d}}v$ Since $u$ and $v$ are dummy variables, the two integrals in equation (1) and equation (2) yield the same result.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.