Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 23

Answer

(a) the speed is at a maximum when $t=\pi$. (b) one arch of the cycloid has length $8$.

Work Step by Step

(a) We have ${\bf{r}}\left( t \right) = \left( {t - \sin t,1 - \cos t} \right)$. So, the derivative is ${\bf{r}}'\left( t \right) = \left( {1 - \cos t,\sin t} \right)$ The speed is $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {1 - \cos t,\sin t} \right)\cdot\left( {1 - \cos t,\sin t} \right)} $ $||{\bf{r}}'\left( t \right)|| = \sqrt {{{\left( {1 - \cos t} \right)}^2} + {{\sin }^2}t} $ $||{\bf{r}}'\left( t \right)|| = \sqrt {1 - 2\cos t + {{\cos }^2}t + {{\sin }^2}t} $ $||{\bf{r}}'\left( t \right)|| = \sqrt {2\left( {1 - \cos t} \right)} $ Recall the identity ${\sin ^2}\left( {\frac{t}{2}} \right) = \frac{1}{2}\left( {1 - \cos t} \right)$. So, $||{\bf{r}}'\left( t \right)|| = \sqrt {4{{\sin }^2}\left( {\frac{t}{2}} \right)} = 2\sin \left( {\frac{t}{2}} \right)$ Let $f\left( t \right)$ denote the speed such that $f\left( t \right) = ||{\bf{r}}'\left( t \right)|| = 2\sin \left( {\frac{t}{2}} \right)$. To find the maximum speed we take the derivative of $f$ and find the critical point by solving the equation: $f'\left( t \right) = \cos \left( {\frac{t}{2}} \right) = 0$ For $t$ in $\left[ {0,2\pi } \right]$, the solution is $t = \pi $. So, the critical point occurs at $t=\pi$. Taking the second derivative gives $f{\rm{''}}\left( t \right) = - \frac{1}{2}\sin \left( {\frac{t}{2}} \right)$. Since $f{\rm{''}}\left( \pi \right) = - \frac{1}{2} < 0$, therefore the speed is at a maximum when $t=\pi$. (b) From part (a) we obtain the speed is $||{\bf{r}}'\left( t \right)|| = 2\sin \left( {\frac{t}{2}} \right)$ Recall from the parametrization of a cycloid on page 599, an arch of the cycloid corresponds to the interval $0 \le t \le 2\pi $. Thus, the length of one arch of the cycloid is $s = \mathop \smallint \limits_0^{2\pi } ||{\bf{r}}'\left( t \right)||{\rm{d}}t = \mathop \smallint \limits_0^{2\pi } 2\sin \left( {\frac{t}{2}} \right){\rm{d}}t$ $s = - 2\cdot2\cdot\cos \left( {\frac{t}{2}} \right)|_0^{2\pi } = - 4\left( { - 1 - 1} \right) = 8$ Hence, one arch of the cycloid has length $8$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.