Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 28

Answer

The arc length parametrization is ${{\bf{r}}_1}\left( s \right) = \left( {1 + 4\cos \frac{s}{4},4 + 4\sin \frac{s}{4},9} \right)$

Work Step by Step

A circle with radius $4$ in the $xy$-plane with center $\left( {1,4} \right)$ is given by ${\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = 16$ This can be parametrized by $x\left( t \right) = 1 + 4\cos t$ and $y\left( t \right) = 4 + 4\sin t$, because it satisfies the equation above. For the circle in the plane $z=9$ with radius $4$ and center $\left( {1,4,9} \right)$, we have $x\left( t \right) = 1 + 4\cos t$, ${\ \ }$ $y\left( t \right) = 4 + 4\sin t$, ${\ \ }$ $z\left( t \right) = 9$ Hence, the parametrization is ${\bf{r}}\left( t \right) = \left( {1 + 4\cos t,4 + 4\sin t,9} \right)$, ${\ \ }$ for $0 \le t \le 2\pi $ Next, we find the arc length parametrization. The derivative is ${\bf{r}}'\left( t \right) = \left( { - 4\sin t,4\cos t,0} \right)$ Evaluate the arc length function $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = \mathop \smallint \limits_0^t \sqrt {16{{\sin }^2}u + 16{{\cos }^2}u} {\rm{d}}u$ $s\left( t \right) = 4\mathop \smallint \limits_0^t {\rm{d}}u = 4t$ The inverse of $s\left( t \right)$ is $t = \frac{s}{4}$. Substituting $t$ in ${\bf{r}}\left( t \right) = \left( {1 + 4\cos t,4 + 4\sin t,9} \right)$ gives ${{\bf{r}}_1}\left( s \right) = \left( {1 + 4\cos \frac{s}{4},4 + 4\sin \frac{s}{4},9} \right)$ Thus, the arc length parametrization is ${{\bf{r}}_1}\left( s \right) = \left( {1 + 4\cos \frac{s}{4},4 + 4\sin \frac{s}{4},9} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.