Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 35

Answer

An arc length parametrization: ${{\bf{r}}_1}\left( s \right) = \left( {\frac{s}{{\sqrt {1 + {m^2}} }},\frac{{ms}}{{\sqrt {1 + {m^2}} }}} \right)$

Work Step by Step

We have $y=m x$. Setting $t=x$, the line can be parametrized by ${\bf{r}}\left( t \right) = \left( {t,mt} \right)$. The derivative is ${\bf{r}}'\left( t \right) = \left( {1,m} \right)$. The speed is $||{\bf{r}}'\left( t \right)|| = \sqrt {\left( {1,m} \right)\cdot\left( {1,m} \right)} = \sqrt {1 + {m^2}} $ Evaluate the arc length function: $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ Since $m$ is a constant, we get $s\left( t \right) = \sqrt {1 + {m^2}} \mathop \smallint \limits_0^t {\rm{d}}u = t\sqrt {1 + {m^2}} $ Thus, the inverse of $s\left( t \right)$ is $t = \frac{s}{{\sqrt {1 + {m^2}} }}$. Substituting $t$ in ${\bf{r}}\left( t \right) = \left( {t,mt} \right)$ gives the arc length parametrization: ${{\bf{r}}_1}\left( s \right) = \left( {\frac{s}{{\sqrt {1 + {m^2}} }},\frac{{ms}}{{\sqrt {1 + {m^2}} }}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.