Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 726: 34

Answer

An arc length parametrization of the cycloid: ${{\bf{r}}_1}\left( s \right) = (2{\cos ^{ - 1}}\left( {1 - \frac{s}{4}} \right) - \sin \left( {2{{\cos }^{ - 1}}\left( {1 - \frac{s}{4}} \right)} \right),$ $1 - \cos \left( {2{{\cos }^{ - 1}}\left( {1 - \frac{s}{4}} \right)} \right))$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t - \sin t,1 - \cos t} \right)$. The derivative is ${\bf{r}}'\left( t \right) = \left( {1 - \cos t,\sin t} \right)$ So, $||{\bf{r}}'\left( t \right)|{|^2} = \left( {1 - \cos t,\sin t} \right)\cdot\left( {1 - \cos t,\sin t} \right)$ $||{\bf{r}}'\left( t \right)|{|^2} = {\left( {1 - \cos t} \right)^2} + {\sin ^2}t$ $||{\bf{r}}'\left( t \right)|{|^2} = 1 - 2\cos t + {\cos ^2}t + {\sin ^2}t$ $||{\bf{r}}'\left( t \right)|{|^2} = 2 - 2\cos t = 2\left( {1 - \cos t} \right)$ $||{\bf{r}}'\left( t \right)|| = \sqrt {2\left( {1 - \cos t} \right)} $ Recall the identity ${\sin ^2}\left( {\frac{t}{2}} \right) = \frac{1}{2}\left( {1 - \cos t} \right)$. So, $||{\bf{r}}'\left( t \right)|| = \sqrt {4{{\sin }^2}\left( {\frac{t}{2}} \right)} = 2\sin \left( {\frac{t}{2}} \right)$ Evaluate the arc length function: $s\left( t \right) = \mathop \smallint \limits_0^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = 2\mathop \smallint \limits_0^t \sin \left( {\frac{u}{2}} \right){\rm{d}}u$ $s\left( t \right) = - 4\cos \left( {\frac{u}{2}} \right)|_0^t = - 4\left( {\cos \left( {\frac{t}{2}} \right) - 1} \right)$ It follows that $ - \frac{s}{4} + 1 = \cos \left( {\frac{t}{2}} \right)$ $t = 2{\cos ^{ - 1}}\left( {1 - \frac{s}{4}} \right)$ Thus, the inverse of $s\left( t \right)$ is $t = 2{\cos ^{ - 1}}\left( {1 - \frac{s}{4}} \right)$. Substituting $t$ in ${\bf{r}}\left( t \right) = \left( {t - \sin t,1 - \cos t} \right)$ gives the arc length parametrization: ${{\bf{r}}_1}\left( s \right) = (2{\cos ^{ - 1}}\left( {1 - \frac{s}{4}} \right) - \sin \left( {2{{\cos }^{ - 1}}\left( {1 - \frac{s}{4}} \right)} \right),$ $1 - \cos \left( {2{{\cos }^{ - 1}}\left( {1 - \frac{s}{4}} \right)} \right))$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.