Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 592: 64

Answer

(a) $\mathop \sum \limits_{n = 1}^\infty 2{a_n}$ converges. (b) $\mathop \sum \limits_{n = 1}^\infty {3^n}{a_n}$ diverges (c) $\mathop \sum \limits_{n = 1}^\infty \sqrt {{a_n}} $ converges.

Work Step by Step

(a) Consider $\mathop \sum \limits_{n = 1}^\infty 2{a_n}$. Apply Theorem 2 (Root Test) of Section 11.5: $L = \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{2{a_n}}}$ We get $L = \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{2{a_n}}} = \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{2}\sqrt[n]{{{a_n}}} = \left( {\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{2}} \right)\left( {\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{a_n}}}} \right)$ Since $\mathop {\lim }\limits_{n \to \infty } {2^{\dfrac{1}{n}}} = 1$ and $\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{a_n}}} = \dfrac{1}{2}$, so $L = \dfrac{1}{2}$. Because $L = \dfrac{1}{2} \lt 1$, by the Root Test: $\mathop \sum \limits_{n = 1}^\infty 2{a_n}$ converges. (b) Consider $\mathop \sum \limits_{n = 1}^\infty {3^n}{a_n}$. Apply Theorem 2 (Root Test) of Section 11.5: $L = \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{3^n}{a_n}}}$ We get $L = \mathop {\lim }\limits_{n \to \infty } \left( {3\sqrt[n]{{{a_n}}}} \right) = 3\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{a_n}}}$ Since $\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{a_n}}} = \dfrac{1}{2}$, so $L = \dfrac{3}{2}$. Because $L = \dfrac{3}{2} \gt 1$, by the Root Test: $\mathop \sum \limits_{n = 1}^\infty {3^n}{a_n}$ diverges. (c) Consider $\mathop \sum \limits_{n = 1}^\infty \sqrt {{a_n}} $. Apply Theorem 2 (Root Test) of Section 11.5: $L = \mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{a_n}^{1/2}}}$ We get $L = \mathop {\lim }\limits_{n \to \infty } {\left( {{a_n}^{\dfrac{1}{2}}} \right)^{\dfrac{1}{n}}} = {\left( {\mathop {\lim }\limits_{n \to \infty } {a^{\dfrac{1}{n}}}} \right)^{\dfrac{1}{2}}}$ Since $\mathop {\lim }\limits_{n \to \infty } \sqrt[n]{{{a_n}}} = \dfrac{1}{2}$, so $L = {\left( {\dfrac{1}{2}} \right)^{\dfrac{1}{2}}} \approx 0.7071$. Because $L \approx 0.7071 \lt 1$, by the Root Test: $\mathop \sum \limits_{n = 1}^\infty \sqrt {{a_n}} $ converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.