Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 592: 61

Answer

(a) $499$ terms are needed. (b) ${K_{499}} \approx 0.915965$ approximates the Catalan's constant $K = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {2k + 1} \right)}^2}}} \approx 0.915966$ to within an error of less than ${10^{ - 6}}$.

Work Step by Step

(a) We have $K = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {2k + 1} \right)}^2}}}$, where the positive terms are ${b_k} = \dfrac{1}{{{{\left( {2k + 1} \right)}^2}}}$. By Eq. (2) in Theorem 3 of Section 11.4: $\left| {K - {K_n}} \right| \lt {b_{n + 1}}$ We choose $n$ so that $\left| {K - {K_n}} \right| \lt {b_{n + 1}} \lt {10^{ - 6}}$ Thus, $\dfrac{1}{{{{\left( {2n + 3} \right)}^2}}} \lt {10^{ - 6}}$ ${\left( {2n + 3} \right)^2} \gt {10^6}$ We solve this inequality and obtain $n \gt 498.5$. So, we choose $N=499$. Thus, we need $499$ terms of the series to calculate $K$ with an error of less than ${10^{ - 6}}$. (b) Using a computer algebra system, we compute: ${K_{499}} = \mathop \sum \limits_{k = 0}^{499} \dfrac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {2k + 1} \right)}^2}}} \approx 0.915965$, ${\ \ \ \ \ }$ $K = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {2k + 1} \right)}^2}}} \approx 0.915966$ $\left| {K - {K_{499}}} \right| \approx 4.99999 \times {10^{ - 7}} \lt {10^{ - 6}}$ Thus, ${K_{499}} \approx 0.915965$ approximates the Catalan's constant $K = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {2k + 1} \right)}^2}}} \approx 0.915966$ to within an error of less than ${10^{ - 6}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.