Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 592: 55

Answer

(a) We show that $S = \mathop \sum \limits_{n = 1}^\infty \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}}$ converges. (b) The approximation of $S$: $0.397116 \le S \le 0.397117$ The maximum size of the error: ${10^{ - 6}}$

Work Step by Step

(a) For $n \gt 1$, we have $0 \lt \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}} \lt \dfrac{n}{{{n^4}}}$ The larger series $\mathop \sum \limits_{n = 1}^\infty \dfrac{1}{{{n^3}}}$ converges (because $p = 3 \gt 1$, by the Convergence of $p$-Series). Hence, by the Direct Comparison Test, the smaller series $\mathop \sum \limits_{n = 1}^\infty \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}}$ also converges. (b) We have $S = \mathop \sum \limits_{n = 1}^\infty \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}}$. Let $f\left( x \right) = \dfrac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}$. Recall Eq. (4) in Exercise 85 of Section 11.3: $\mathop \sum \limits_{n = 1}^M {a_n} + \mathop \smallint \limits_{M + 1}^\infty f\left( x \right){\rm{d}}x \le S \le \mathop \sum \limits_{n = 1}^{M + 1} {a_n} + \mathop \smallint \limits_{M + 1}^\infty f\left( x \right){\rm{d}}x$ With $M=99$, we get $\mathop \sum \limits_{n = 1}^{99} \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}} + \mathop \smallint \limits_{100}^\infty \dfrac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}{\rm{d}}x \le S \le \mathop \sum \limits_{n = 1}^{100} \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}} + \mathop \smallint \limits_{100}^\infty \dfrac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}{\rm{d}}x$ We compute the following using a computer algebra system: $\mathop \sum \limits_{n = 1}^{99} \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}} \approx 0.397066$, ${\ \ \ \ \ \ \ }$ $\mathop \sum \limits_{n = 1}^{100} \dfrac{n}{{{{\left( {{n^2} + 1} \right)}^2}}} \approx 0.397067$ $\mathop \smallint \limits_{100}^\infty \dfrac{x}{{{{\left( {{x^2} + 1} \right)}^2}}}{\rm{d}}x \approx 0.000049995$ Thus, $0.397066 + 0.000049995 \le S \le 0.397067 + 0.000049995$ $0.397116 \le S \le 0.397117$ From here, we obtain the maximum size of the error: $0.397117 - 0.397116 = {10^{ - 6}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.