Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 592: 60

Answer

The partial sum ${S_{46}} \approx - 0.418452$ approximates the series $S = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{{n^3} + \sqrt n }} \approx - 0.418457$ to within an error of at most ${10^{ - 5}}$.

Work Step by Step

We have $S = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{{n^3} + \sqrt n }}$, where the positive terms are ${b_n} = \dfrac{1}{{{n^3} + \sqrt n }}$. By Eq. (2) in Theorem 3 of Section 11.4: $\left| {S - {S_n}} \right| \lt {b_{n + 1}}$ We determine $n$ so that $\left| {S - {S_n}} \right| \lt {b_{n + 1}} \lt {10^{ - 5}}$ Thus, $\dfrac{1}{{{{\left( {n + 1} \right)}^3} + \sqrt {n + 1} }} \lt {10^{ - 5}}$ ${\left( {n + 1} \right)^3} + \sqrt {n + 1} \gt {10^5}$ We solve this inequality using a computer algebra system and obtain $n \gt 45.4148$. So, we choose $N=46$. Using a computer algebra system, we compute: ${S_{46}} = \mathop \sum \limits_{n = 1}^{46} \dfrac{{{{\left( { - 1} \right)}^n}}}{{{n^3} + \sqrt n }} \approx - 0.418452$, ${\ \ \ \ \ \ \ }$ $S = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{{n^3} + \sqrt n }} \approx - 0.418457$ $\left| {S - {S_{46}}} \right| \approx 4.969 \times {10^{ - 6}} \lt {10^{ - 5}}$ Thus, ${S_{46}} \approx - 0.418452$ approximates the series $S \approx - 0.418457$ to within an error of at most ${10^{ - 5}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.