Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 442: 28

Answer

$\text{Area = $4 - \sqrt 7$}$

Work Step by Step

$\text{It is given that}$ \begin{align} f(y) = \frac{y}{\sqrt {16-y^2}}; \ g(y) = 0; \ y = 3 \end{align} $\text{The intersection of f(y) and g(y) is}$ \begin{align} \frac{y}{\sqrt {16-y^2}} = 0 \\ y = 0 \Rrightarrow x = 0 \end{align} $\text{Thus, the area of the given region is}$ \begin{align} Area = \int_0^3 \frac{y}{\sqrt {16-y^2}} \ dy \end{align} $\text{Apply u - substitution $u = 16 - y^2; du = -2ydy$:}$ \begin{align} Area = \int_{16}^7 -\frac{1}{2\sqrt u} du = \frac{1}{2} \int^{16}_7\frac{1}{\sqrt u} du = \\ = \left[ \sqrt u \right]_7^{16} = 4 - \sqrt 7 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.