Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1050: 70

Answer

$\operatorname{curl} \mathbf{H} = (x^2 + 2xz + x, \; 0, \; -z^2 - 2xz - z)$

Work Step by Step

\[ \mathbf{F} = (x, 0, -z), \quad \mathbf{G} = (x^2, y, z^2) \] \[ \mathbf{H} = \mathbf{F} \times \mathbf{G} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & 0 & -z \\ x^2 & y & z^2 \end{vmatrix} = \mathbf{i}(0 \cdot z^2 - (-z) \cdot y) - \mathbf{j}(x \cdot z^2 - (-z) \cdot x^2) + \mathbf{k}(x \cdot y - 0 \cdot x^2) = \mathbf{i}(yz) - \mathbf{j}(xz^2 + x^2 z) + \mathbf{k}(xy) \] \[ \operatorname{curl} \mathbf{H} = \nabla \times \mathbf{H} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & -xz^2 - x^2 z & xy \end{vmatrix} \] \[ \operatorname{curl} \mathbf{H} = \mathbf{i} \Bigl( \frac{\partial}{\partial y}(xy) - \frac{\partial}{\partial z}(-xz^2 - x^2 z) \Bigr) - \mathbf{j} \Bigl( \frac{\partial}{\partial x}(xy) - \frac{\partial}{\partial z}(yz) \Bigr) + \mathbf{k} \Bigl( \frac{\partial}{\partial x}(-xz^2 - x^2 z) - \frac{\partial}{\partial y}(yz) \Bigr) \] \[ \operatorname{curl} \mathbf{H} = \mathbf{i} (x - (-2xz - x^2)) - \mathbf{j} (y - y) + \mathbf{k}((-z^2 - 2xz) - z) = \mathbf{i} (x^2 + 2xz + x) - \mathbf{j} (0) + \mathbf{k}(-z^2 - 2xz - z) \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.