Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1050: 69

Answer

$\nabla \times (\mathbf{F} \times \mathbf{G}) = 9x \mathbf{j} - 2y \mathbf{k}$

Work Step by Step

\[ \mathbf{F} = (1, 3x, 2y), \quad \mathbf{G} = (x, -y, z) \] \[ \mathbf{H} = \mathbf{F} \times \mathbf{G} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3x & 2y \\ x & -y & z \end{vmatrix} \] \[ = \mathbf{i}(3xz + 2y^2) - \mathbf{j}(z - 2xy) + \mathbf{k}(-y - 3x^2) \] \[ \text{curl } \mathbf{H} = \nabla \times \mathbf{H} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z} \\ 3xz + 2y^2 & -(z - 2xy) & -y - 3x^2 \end{vmatrix} \] \[ = \mathbf{i} \left( \frac{\partial}{\partial y} (-y - 3x^2) - \frac{\partial}{\partial z} (-(z - 2xy)) \right) - \mathbf{j} \left( \frac{\partial}{\partial x} (-y - 3x^2) - \frac{\partial}{\partial z} (3xz + 2y^2) \right) + \mathbf{k} \left( \frac{\partial}{\partial x} (-(z - 2xy)) - \frac{\partial}{\partial y} (3xz + 2y^2) \right) \] \[ = \mathbf{i} ( -1 - (-1) ) - \mathbf{j} ( -6x - 3x ) + \mathbf{k} ( 2y - 4y ) \] \[ = 0\mathbf{i} + 9x \mathbf{j} - 2y \mathbf{k} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.