Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1050: 60

Answer

$\frac{2x}{x^{2}+y^{2}}+x+\frac{2z}{y^{2}+z^{2}}$

Work Step by Step

div $\textbf{F}=\nabla\cdot \textbf{F}=\nabla\cdot\langle \ln(x^{2}+y^{2}),xy,\ln(y^{2}+z^{2})\rangle$ $=\frac{\partial}{\partial x}(\ln(x^{2}+y^{2}))+\frac{\partial}{\partial y}(xy)+\frac{\partial}{\partial z}(\ln(y^{2}+z^{2}))$ $=\frac{2x}{x^{2}+y^{2}}+x+\frac{2z}{y^{2}+z^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.