Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.4 Exercises - Page 848: 6

Answer

$$ \mathbf{T}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j} $$

Work Step by Step

Given $$\mathbf{r}= e^t\cos t\mathbf{i} +e^t\mathbf{j} $$ Since $$ \mathbf{r'}= e^t(\cos t-\sin t) \mathbf{i} +e^t\mathbf{j} $$ and $$ \| \mathbf{r'} \|=\sqrt{e^{2t}(\cos t-\sin t)^2+e^{2t} } =e^t \sqrt{ 2-\sin2t}$$ Then unit tangent vector given by \begin{align*} \mathbf{T}(t)&=\frac{\mathbf{r'}(t)}{\|\mathbf{r'}(t)\|}\\ &=\frac{ e^t(\cos t-\sin t) \mathbf{i} +e^t\mathbf{j} }{e^t \sqrt{2-\sin2t}}\\ &=\frac{ (\cos t-\sin t) \mathbf{i} + \mathbf{j} }{ \sqrt{ 2-\sin2t}} \end{align*} At $t=0$ $$ \mathbf{T}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.