Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.4 Exercises - Page 848: 1

Answer

$$ \mathbf{T}=\frac{1}{\sqrt{2} } \mathbf{i} +\frac{1}{\sqrt{2} } \mathbf{j} $$

Work Step by Step

Given $$\mathbf{r}= t^2\mathbf{i} +2t\mathbf{j} $$ Since $$ \mathbf{r'}= 2t\mathbf{i} +2\mathbf{j}$$ and $$ \| \mathbf{r'} \|=\sqrt{ 4t^2+4} =2\sqrt{t^2+1}$$ Then unit tangent vector given by \begin{align*} \mathbf{T}(t)&=\frac{\mathbf{r'}(t)}{\|\mathbf{r'}(t)\|}\\ &=\frac{2t\mathbf{i} +2\mathbf{j}}{2\sqrt{t^2+1}}\\ &=\frac{ t\mathbf{i} + \mathbf{j}}{ \sqrt{t^2+1} } \end{align*} At $t=1$ $$ \mathbf{T}=\frac{1}{\sqrt{2} } \mathbf{i} +\frac{1}{\sqrt{2} } \mathbf{j} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.