Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.4 Exercises - Page 848: 16

Answer

$${\bf{N}}\left( {\frac{\pi }{6}} \right) = - \frac{{\sqrt 3 }}{2}{\bf{i}} - \frac{1}{2}{\bf{j}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \pi \cos t{\bf{i}} + \pi \sin t{\bf{j}},{\text{ }}t = \frac{\pi }{6} \cr & {\text{Calculate }}{\bf{r}}{\text{'}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = - \pi \sin t{\bf{i}} + \pi \cos t{\bf{j}} \cr & {\text{Find the unit Tangent Vector }}{\bf{T}}\left( t \right) \cr & {\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{\left\| {{\bf{r}}'\left( t \right)} \right\|}},{\text{ }}{\bf{r}}'\left( t \right) \ne 0 \cr & {\bf{T}}\left( t \right) = \frac{{ - \pi \sin t{\bf{i}} + \pi \cos t{\bf{j}}}}{{\left\| { - \pi \sin t{\bf{i}} + \pi \cos t{\bf{j}}} \right\|}} = \frac{{ - \pi \sin t{\bf{i}} + \pi \cos t{\bf{j}}}}{{\sqrt {{\pi ^2}{{\sin }^2}t + {\pi ^2}{{\cos }^2}t} }} \cr & {\bf{T}}\left( t \right) = \frac{{ - \pi \sin t{\bf{i}} + \pi \cos t{\bf{j}}}}{\pi } \cr & {\bf{T}}\left( t \right) = - \sin t{\bf{i}} + \cos t{\bf{j}} \cr & {\text{Find }}{\bf{T}}'\left( t \right) \cr & {\bf{T}}'\left( t \right) = \frac{d}{{dt}}\left[ { - \sin t} \right]{\bf{i}} + \frac{d}{{dt}}\left[ {\cos t} \right]{\bf{j}} \cr & {\bf{T}}'\left( t \right) = - \cos t{\bf{i}} - \sin t{\bf{j}} \cr & {\text{Evaluate }}{\bf{T}}'\left( t \right){\text{ at }}t = \frac{\pi }{6} \cr & {\bf{T}}'\left( {\frac{\pi }{6}} \right) = - \cos \left( {\frac{\pi }{6}} \right){\bf{i}} - \sin \left( {\frac{\pi }{6}} \right){\bf{j}} \cr & {\bf{T}}'\left( {\frac{\pi }{6}} \right) = - \frac{{\sqrt 3 }}{2}{\bf{i}} - \frac{1}{2}{\bf{j}} \cr & \left\| {{\bf{T}}'\left( {\frac{\pi }{6}} \right)} \right\| = \sqrt {{{\left( { - \frac{{\sqrt 3 }}{2}} \right)}^2} + {{\left( { - \frac{1}{2}} \right)}^2}} = 1 \cr & {\text{Finding the Principal Unit Normal Vector}} \cr & {\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{\left\| {{\bf{T}}'\left( t \right)} \right\|}} \cr & {\text{Evaluate }}{\bf{N}}'\left( t \right){\text{ at }}t = \pi /6 \cr & {\bf{N}}\left( {\frac{\pi }{6}} \right) = \frac{{{\bf{T}}'\left( {\pi /6} \right)}}{{\left\| {{\bf{T}}'\left( {\pi /6} \right)} \right\|}} = \frac{{ - \frac{{\sqrt 3 }}{2}{\bf{i}} - \frac{1}{2}{\bf{j}}}}{1} \cr & {\bf{N}}\left( {\frac{\pi }{6}} \right) = - \frac{{\sqrt 3 }}{2}{\bf{i}} - \frac{1}{2}{\bf{j}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.